
The untold story of
code refactoring customizations in practice

Daniel Oliveira∗, Wesley K. G. Assunção∗§, Alessandro Garcia∗,
Ana Carla Bibiano∗, Márcio Ribeiro†, Rohit Gheyi‡, Baldoino Fonseca†

∗Informatics Department – Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
§Institute of Software Systems Engineering – Johannes Kepler University (JKU), Linz, Austria

†Computing Institute – Federal University of Alagoas (UFAL), Maceió, Brazil
‡Department of Computing and Systems – Federal University of Campina Grande (UFCG), Campina Grande, Brazil

Abstract—Refactoring is a common software maintenance
practice. The literature defines standard code modifications for
each refactoring type and popular IDEs provide refactoring
tools aiming to support these standard modifications. However,
previous studies indicated that developers either frequently avoid
using these tools or end up modifying and even reversing the code
automatically refactored by IDEs. Thus, developers are forced to
manually apply refactorings, which is cumbersome and error-
prone. This means that refactoring support may not be entirely
aligned with practical needs. The improvement of tooling support
for refactoring in practice requires understanding in what ways
developers tailor refactoring modifications. To address this issue,
we conduct an analysis of 1,162 refactorings composed of more
than 100k program modifications from 13 software projects.
The results reveal that developers recurrently apply patterns of
additional modifications along with the standard ones, from here
on called patterns of customized refactorings. For instance, we
found customized refactorings in 80.77% of the Move Method
instances observed in the software projects. We also investigated
the features of refactoring tools in popular IDEs and observed
that most of the customization patterns are not fully supported
by them. Additionally, to understand the relevance of these
customizations, we conducted a survey with 40 developers about
the most frequent customization patterns we found. Developers
confirm the relevance of customization patterns and agree that
improvements in IDE’s refactoring support are needed. These
observations highlight that refactoring guidelines must be up-
dated to reflect typical refactoring customizations. Also, IDE
builders can use our results as a basis to enable a more flexible
application of automated refactorings. For example, developers
should be able to choose which method must handle exceptions
when extracting an exception code into a new method.

Index Terms—Refactoring, Custom Refactoring, Refactoring
Tooling Support

I. INTRODUCTION

Code refactoring is a widely used practice to promote
program maintainability and other quality attributes [1]–[3].
Each code refactoring type is composed of a set of one
or more modifications that aim at improving the program
structure [1]. To support refactoring, the literature provides
a set of standard modifications for each refactoring type [1],
[4]. Despite the importance of refactorings as a strategy to
keep internal software quality, developers remain reluctant on
using IDE tools [5]–[7] to support these refactorings [8], [9]. In
fact, developers believe these tools have limitations to practical

use [9], [10]. These factors indicate that existing automated
refactoring support may not be sufficient yet.

Previous studies observed that developers usually tailor the
set of modifications associated with each refactoring type
described in refactoring catalogs [10], [11]. These tailored
modifications are named non-standard modifications and are
part of refactoring customizations. A customized refactoring
includes non-standard modifications that cohesively contribute
to the realization of a refactoring type. Refactoring customiza-
tion may be required to satisfy recurring developers’ needs
such as an adjustment to a local code structure, the removal of
a certain poor structure, or even updating client methods [10].

We can observe some attempts to support developers in
customizing refactorings. For instance, popular IDEs, such as
Eclipse [5], NetBeans [6], and IntelliJ [7], allow developers to
customize their refactorings through basic settings. However,
previous studies [9]–[11] suggest that these settings are not
aligned with the practice. Then, developers are induced to
perform refactorings without the use of an IDE [12].

To the best of our knowledge, no study has analyzed in
depth the typical customizations of refactoring types across
multiple software projects. There are various open questions,
including: (i) do developers indeed often customize their refac-
torings? (ii) what are the most common modifications related
to each customized refactoring? (iii) how to improve IDEs to
properly support the application of customized refactorings?
The answers to such questions are necessary to guide tool
builders in supporting the application of customized refactor-
ings. Also, adequate guidelines and tooling support aligned
with the practice may reduce developers’ efforts.

Based on these limitations, we conducted a study by min-
ing 13 open-source projects developed in Java. We focused
our analysis on four common refactoring types, namely Ex-
tract Method, Inline Method, Pull Up Method, and Move
Method [13], [14]. We identified, by using RefactoringMiner
(RMiner) [4], 1,162 refactorings composed of more than
100k modifications. The analysis showed that standard mod-
ifications were often accompanied by recurring additional
modifications, thereby showing that refactorings are indeed
frequently customized by developers. We noticed in commits’
comments that their authors mentioned the need for additional
modifications to ensure the program’s correctness [15], [16].

We found 42 patterns of customized refactoring that oc-
curred in various refactorings of the same type. For instance,
various patterns include a similar structure of exception han-
dlers and related method calls, which go against certain IDE
tooling mechanics. Developers would not be able to safely
reuse these frequent customizations if they are not correctly
predefined and supported by the IDE. Even worse, developers
would have to: (i) find out by themselves the IDE’s transfor-
mation is not adequate, (ii) ensure the program’s correctness
by avoiding unexpected behavior, and (iii) manually apply
this non-trivial pattern in their code. Thus, understanding cus-
tomized patterns is the basis for guiding in-depth investigations
of customized refactorings and cataloging the scenarios in
which these customized refactorings are applied.

Based on our findings, we evaluated the existing tooling
support for applying frequent customized refactoring with
widely used IDEs, namely Eclipse, IntelliJ, and NetBeans [12],
[17]. We then listed and discussed 12 limitations that hamper
the application of found patterns using such IDEs. For exam-
ple, a key prevailing limitation is the lack of flexibility for
developers to choose which method should handle exceptions
when performing a Extract Method. IDEs make certain rigid
choices on the behalf of developers, e.g., inducing an exception
handling location, which may lead to bugs in the refactored
code. Therefore, our study findings shed light on how to
improve refactoring guidelines and tool support. Our findings
also provide insights on the design of recommenders for
assisting developers in properly selecting code modifications
of a refactoring that best match the contextual needs.

Finally, to corroborate the results of our previous analysis,
we performed a survey with 40 developers. This survey was
applied to investigate the relevance of the refactoring cus-
tomization patterns and corresponding tool support. We found
that 92.7% of the interviewed developers consider as important
the addition of tooling support for customized refactoring in
IDEs. Also, the interviewed developers provided additional
arguments on the importance of these patterns.

II. BACKGROUND AND STATE OF THE ART

A. Refactoring Research and Practice

Code refactoring consists of applying modifications to code
structures for enhancing program comprehensibility, maintain-
ability, and other quality attributes [1], [10], [18]. The litera-
ture cataloged (e.g., Fowlers’ catalog [1]) various refactoring
types and their mechanics. The mechanics for a refactoring
type defines a set of standard code modifications, which guide
developers in enhancing their code structure.

For our study, we focused on four popular refactoring types,
chosen for two reasons. First, they have different scopes, i.e.,
they cover both class-level modifications such as Pull Up
Method and Move Method, and method-level ones such as
Extract Method and Inline Method. Second, we focused on fre-
quent, more complex, structural refactorings [18]–[20]. Sim-
pler refactorings, e.g., renaming, have less room for structural
customization. Our selected refactoring types have wide scopes
and allow a high number of customizations. Also, these four

TABLE I
REFACTORING DETAILS AND STANDARD REFACTORING MECHANICS

Type Description Source Target Standard modification set

Extract
Method

Create a method
based on statements
extracted from
an existing method

Method where
the extraction
was performed

Extracted
method

• Create the target method with code
extracted from the source method

• Update variables’ references
• Add in the source method’s body

a call to the target method

Inline
Method

Incorporate the
body of a method
into an existing
method

Method to be
inlined

Method that
inlined the
source

• Replace each call to the source
method with its method body

• (Optional) Remove the source‘s
method declaration

Pull Up
Method

Move a method
from a child class
to its parent clas

Method in the
subclass

Pulled up
method in
the superclass

• Create target method in the superclass
and copy the source‘s method body

• Remove from all subclasses
the source’s method declaration

• If possible, change source methods
calls, with call to the target method

Move
Method

Move a method
from one class
to another class

Method to
be moved

Method after
being moved

• Create target method with a
copy of the source‘s body method

• If removed source‘s method:
replace calls to target method

• If did not remove source‘s method:
add target call in source‘s body

types of refactorings share structural similarities with other
refactoring types, e.g., Move Method moves a method from
one class to another similarly to Push Downs and Pull ups.

Table I describes the refactorings with their correspond-
ing source and target elements. These elements represent
the main method modified, i.e., the source, and the method
produced after the refactoring, i.e., the target. The standard
modification sets are shown in the last column of Table I.
These modifications are aligned with Fowler’s and Opdyke’s
refactoring mechanics [1], [21], being the basis for the design
of refactoring tools [4], [8], [22]–[25].

In several contexts, developers may need to customize the
standard sets of modifications [11], adding or removing modi-
fications from this standard set to tailor refactorings [11], [18].
These customizations make the application of refactorings
more complex [10], [26]. To make it worse, existing refac-
toring tools (e.g., [4], [27]–[31]) are mostly focused on only
providing support for either the detection or the application of
standard mechanics. In this way, there is a lack of tool support
for these more complex refactorings, even though the interest
of developers has been demonstrated in the literature [9], [10].

Previous studies investigated the motivations behind the
refactoring application [32], [33]. Although these studies ob-
served different reasons for performing refactorings, little is
known about how refactorings are customized based on devel-
opers’ needs or motivations. Some studies discuss the concept
of floss refactoring [18], [34]. Floss refactorings are refactor-
ings applied with other development activities, such as feature
additions or bug fixes [18], [32]. The set of modifications
in a floss refactoring may include some additional and non-
standard modifications as part of the refactoring customization.
However, these studies do not characterize which of these
modifications are related to the refactoring itself. This charac-
terization is necessary to properly support the application of
customized refactoring through refactoring catalogs and tools.

A recent study investigated which modifications are com-
bined with Extract Method [35]. However, this study focuses
on only one refactoring type, besides investigating a limited
scope of modifications. Also, the authors use a different AST
diff with a higher granularity level. Finally, this study does not

investigate the support of these additional refactoring-related
modifications on popular IDEs. Another study speculated the
need for customized refactoring according to the development
context [11]. However, this study did not empirically inves-
tigate the occurrences of refactoring customizations in those
projects as well as their characteristics and support required.

In summary, the knowledge about customized refactoring is
quite limited. It remains challenging and necessary to investi-
gate: (i) in what ways refactorings are customized in practice,
and (ii) whether and how to start improving IDEs refactoring
tools to properly support refactoring customizations.

B. Refactoring Customization

Customized refactoring is a variation of the standard set
of modifications defined for a type of refactoring [1]. This
variation may occur due to the addition or even the removal
of modifications from the standard set. Customization is often
needed to tailor the refactoring to a program context. A cus-
tomized refactoring includes only one or more non-standard
modifications that have to be applied together with the standard
ones to fully realize a refactoring. In other words, the non-
standard modifications of a customized refactoring are also
structural modifications required to implement a refactoring
type. Non-standard and standard modifications of a customized
refactoring interact and cohesively contribute to the realization
of a refactoring type.

The conventional definition of refactoring assumes code
behavior preservation [1]. This definition is in line with the
notion of root-canal refactoring [18]. A root-canal refactoring
occurs when the structural modifications of a refactoring are
applied alone in a change and do not interact with co-occurring
behavioral changes. However, certain recurring refactoring
customizations may also be needed in the context of floss
refactorings [18]; that is, the customized refactoring are ap-
plied in conjunction with other non-refactoring changes, such
as feature addition. The customization may be required due to
the interface of the refactored code with the new feature code.

The practical need for frequent floss refactorings does not
make it possible for developers to always stick to the behavior-
preserving aspect of the conventional definition of refactoring
[10], [18], [36]. Recurring customizations may also exist in
floss refactorings, and, as such, developers also need support to
perform their frequent non-standard modifications for refactor-
ing types in the context of floss refactoring. Thus, we classify
the customized refactorings into two groups: (i) refactoring
customizations that do not change the code behavior, i.e, root-
canal customizations, and (ii) the refactoring customizations
that change the code behavior, i.e, floss customizations.

Finally, we consider as customization pattern the recurring
refactorings that satisfy both conditions: (i) they all have at
least one structural modification that differs from the standard
ones defined for a refactoring type; and (ii) this set of modifi-
cations, including the non-standard one(s), consistently occur
together in multiple instances of that same refactoring type.

Listing 1 presents a refactoring customization, e.g., a root-
canal customization, of a Move Method that was applied to the

Apache Tomcat project [37]. In this case, the developer moved
a method called SETALLOWCASUALMP from the CONNEC-
TOR class to the STANDARDCONTEXT class. This example
has the following modifications: (i) a method was moved from
one class to another class, and (ii) a method signature of this
method was created on the interface (CONTEXT) of the target
class. The first modification is part of the standard set of
modifications for Move Method (see Table I). On the other
hand, the second modification is an additional one that cus-
tomizes the Move Method. This additional modification moved
the SETALLOWCASUALMP method to the target class and
made it an abstract method of the interface implemented by the
target class. This additional modification is important to pass
the test in the class (TESTSTANDARDCONTEXT) that calls
the SETALLOWCASUALMP method directly from the Context
interface. This example is an illustration of a customization
pattern of the Move Method refactoring, in which the moved
methods become part of an inherited interface.

Listing 1. Real Example of Customized Move Method
public class Connector {

- public void setAllowCasualMP(){ ...} ...
}
public class StandardContext implements Context {

+ public void setAllowCasualMP(){ ...} ...
}
public interface Context {

+ public void setAllowCasualMP(){ ...} ...
}

III. STUDY SETTINGS

As discussed in Section 2.1, little is known about refactoring
customizations in practice. Thus, we investigated how devel-
opers apply and customize refactorings on their projects. We
derived two research questions (RQs) that guided our study:

RQ1: In what ways are refactorings customized by devel-
opers? RQ1 aims at investigating how refactorings are applied
in practice. We observe the most frequent root-canal and floss
customizations by analyzing the modifications that compose
each commit that includes a refactoring instance. This analysis
enables us to identify and understand the most frequent
customization patterns. We also discuss divergences between
the modifications that compose the customized patterns and
the standard mechanics of each refactoring type presented
in Table I. As result, we present a catalog of customization
patterns for each refactoring type. These patterns bring insights
into how developers apply and customize refactorings.

RQ2: How to improve IDEs’ automated refactoring tools
to properly support customized refactorings? Automated
refactoring tools available in IDEs aim to support standard
refactoring mechanics. Thus, they do not properly support
customized refactorings both in the context of root-canal and
floss refactorings. However, it is important that refactoring
tools are in accordance with the practice; otherwise, developers
may refuse to use them [9], [10]. In this way, RQ2 aims
at investigating what are the current IDE limitations and
how their refactoring features should be improved to properly
support the application of customized refactorings. For that,

we replicated, using popular IDE refactoring tools, customized
patterns from the catalog obtained as a result of the RQ1. The
result of RQ2 provides a list of identified limitations. This list
is the basis to recommend how IDE tools can improve the
support for developers to perform customized refactorings.

A. Study Steps

This section details the steps performed to build the dataset
and perform the data analysis in our study. All the dataset-
building steps and analyses were conducted by at least two
authors and then discussed with other authors. In the pres-
ence of conflicting views, further discussion was required to
converge. The dataset can be found on our website [38].

Step 1: Project Selection. We selected 13 active Java
open-source projects of different sizes and domains. These
projects are often used in previous studies of refactoring [2],
[19], [20] given their frequency and diversity of refactorings.
We took into account the stars count to prioritize popular
projects [39]. We focused on open-source projects to facilitate
the replication of our study. Finally, choosing Java projects
allow us to use RMiner, a refactoring detection tool with
high recall and precision, as discussed in Step 2. The se-
lected projects were Elasticsearch-hadoop [40], Hystrix [41],
Fresco [42], Achilles [43], Ikasan [44], ExoPlayer [45], Signal-
Android [46], Netty [47], MaterialDrawer [48], Derby [49],
Tomcat [50], HikariCP [51] and Material-dialogs [52]. The
domains are: (i) data search and analysis; (ii) Android systems
such as messaging applications and visual design; (iii) appli-
cation server; and (iv) database construction. These projects
have from 1,121 (doanduyhai Achilles) to 17,787 (Tomcat)
commits.

Step 2: Refactoring Detection. We used RMiner [4] to de-
tect refactorings performed in the selected projects. We chose
RMiner because it is widely used in the literature [13], [19],
[20], [53] and has high recall (87.2%) and precision (98%).
With a high recall, the tool captures almost all refactoring
instances performed in different contexts for each project.
Thus, these instances may represent a variety of modifications
used to customize refactorings for these diverse contexts.

We focused on four refactoring types (Table I), which
are frequent in multiple projects [13], [19] and are present
in popular IDEs. These refactorings constantly occur in a
unique commit, affecting the same code fragment, known as
composite refactorings [20]. Thus, to avoid modifications of
composite refactoring instances to be erroneously considered
as part of a unique refactoring type, we selected only commits
with one detected refactoring. Lastly, any customization exclu-
sively occurring with particular refactoring compositions (e.g.,
Extract Method with Move Method) would be an addition to
the customizations already present in our study; in other words,
they would complement but not invalidate our results.

Step 3: Modification Detection. We used Eclipse’s JDT
3.10 to collect the code modifications [54]. This library parses
Java code into an Abstract Syntax Tree (AST). ASTs are
widely used in the literature to detect refactorings [4], [55].
The Eclipse JDT is also used by the Gumtree framework [56],

a popular framework used in literature to compare ASTs in
Java [57], [58]. We used JDT directly because it provides
Java language syntax information, allowing us to distinguish
the same node type in different contexts. For example, using
JDT we could observe whether the SIMPLE NAME node
is associated with a class variable, interface, class name or
other Java tokens. These differences are relevant to detecting
refactorings customizations and their patterns.

For each refactoring detected in Step 2, we collected the
information before (v) and after (v+1) the refactoring occur-
rence. We collected information related to the classes affected
by the refactoring and their clients. We classified a class as
affected by a refactoring when the modifications occurred
within that class. For instance, an Extract Method has at least
one affected class. On the other hand, a refactoring of the type
Pull Up Method or Move Method has at least two affected
classes, once a method is moved from one class to another
one. Finally, we classified as a client of a class or method
every other class or method that interacts with the client, e.g.,
importing it and/or calling a method of the affected class. Once
we have two subsequent versions of a class, the AST nodes are
defined as ASTv = {nodei, nodei+1, ..., noden} where ASTv

is the set of nodes belonging to the AST in version v. The set
of added nodes to the source code between two subsequent
versions is given by the resulting set of the difference between
ASTv+1 − ASTv . Similarly, the set of removed nodes from
the source code is given by the difference of ASTv−ASTv+1.

Listing 2. Modifications between Two Subsequent Versions
+ public void clear() {
+ if (mAnimatedDrawableCachingBackend ! = null) {
+ mAnimatedDrawableCachingBackend.dropCaches();
+ }
+ ClosebleReference.closeSafely(mLastDrawnFrame);
+ mLastDrawnFrame = null;
+ }
public void onInactive() {

- if (mAnimatedDrawableCachingBackend ! = null) {
- mAnimatedDrawableCachingBackend.dropCaches();
- }
- ClosebleReference.closeSafely(mLastDrawnFrame);
- mLastDrawnFrame = null;
+ clear();
}

Listing 2 illustrates the difference between two subsequent
versions of a class from the Facebook Fresco project [59].
Table II presents a partial list of nodes obtained when ana-
lyzing the code in Listing 2, indicating the node type, scope,
and whether the node was added or removed. We grouped
the nodes based on semantic similarities of their modifica-
tions, creating coarse-grained categories, shown in Table III.
For instance, the nodes related to conditional control, such
as SWITCH STATEMENT, CONDITIONAL EXPRESSION
and IF STATEMENT, were grouped into the group Condi-
tional. These categories enabled us to perform analysis and
comparison focusing on the semantics of the modifications.

Step 4: Dataset Construction. The collected modifications
of all refactoring instances might include modifications re-
lated to different software engineering activities, e.g., feature

TABLE II
NODES DETECTED IN THE SUBSEQUENT VERSIONS

AST Node Statement Element Status
METHOD DECLARATION Animated...Wrapper.clear() Class Added
IF STATEMENT mAnimated...Backend != null clear() Added
IF STATEMENT mAnimated...Backend != null onInactive() Removed

METHOD INVOCATION CloseableR...closeSafely(m...Frame)
mAnimated...Backend.dropCaches() onInactive() Removed

METHOD INVOCATION CloseableR...closeSafely(m...Frame)
mAnimated...Backend.dropCaches() clear() Added

METHOD INVOCATION clear(); onInactive() Added

TABLE III
GROUPED MODIFICATIONS

Category AST Nodes

Annotation

ANNOTATION TYPE DECLARATION,
ANNOTATION TYPE MEMBER DECLARATION,
MEMBER VALUE PAIR, QUALIFIED TYPE,
NAME QUALIFIED TYPE, MARKER ANNOTATION,
NORMAL ANNOTATION, SINGLE MEMBER ANNOTATION

Enum ENUM DECLARATION, ENUM CONSTANT DECLARATION

Method Declaration FIELD DECLARATION, METHOD DECLARATION, INITIALIZER,
LAMBDA EXPRESSION, MODIFIER

Exception Handler TRY STATEMENT, CATCH CLAUSE, THROW STATEMENT, UNION TYPE

Comments
JAVADOC, BLOCK COMMENT, LINE COMMENT, METHOD REF,
METHOD REF PARAMETER, MEMBER REF,
TAG ELEMENT, TEXT ELEMENT

Array Modifier ARRAY CREATION, ARRAY INITIALIZER,
ARRAY ACCESS, ARRAY TYPE, DIMENSION

Literal Modifier BOOLEAN LITERAL, CHARACTER LITERAL, NULL LITERAL,
NUMBER LITERAL, STRING LITERAL, TYPE LITERAL

Class Creation
CLASS INSTANCE CREATION,
ANONYMOUS CLASS DECLARATION, TYPE PARAMETER,
CREATION REFERENCE, TYPE METHOD REFERENCE

Conditional CONDITIONAL EXPRESSION, IF STATEMENT, SWITCH CASE,
SWITCH STATEMENT

Method Access

FIELD ACCESS, METHOD INVOCATION, SUPER METHOD REFERENCE
SUPER FIELD ACCESS, SUPER METHOD INVOCATION,
THIS EXPRESSION, CONSTRUCTOR INVOCATION,
SUPER CONSTRUCTOR INVOCATION, EXPRESSION METHOD REFERENCE

Operator Expression INFIX EXPRESSION, POSTFIX EXPRESSION,
PREFIX EXPRESSION, ASSIGNMENT

Cast INSTANCEOF EXPRESSION, CAST EXPRESSION, INTERSECTION TYPE

Variable Declaration
VARIABLE DECLARATION EXPRESSION,
VARIABLE DECLARATION FRAGMENT,
VARIABLE DECLARATION STATEMENT, SINGLE VARIABLE DECLARATION

Class Control IMPORT DECLARATION, PACKAGE DECLARATION

Loop Flow Control DO STATEMENT, FOR STATEMENT, BREAK STATEMENT, WHILE STATEMENT
CONTINUE STATEMENT, ENHANCED FOR STATEMENT

Type Modifier SIMPLE TYPE, TYPE DECLARATION, TYPE DECLARATION STATEMENT,
PRIMITIVE TYPE, PARAMETERIZED TYPE, WILDCARD TYPE

Return Modifier RETURN STATEMENT

addition. Thus, in this step, we focused on filtering out non-
refactoring modifications, which are modifications not related
to the refactoring activity. Then, in order to facilitate the
identification and removal of non-refactoring modifications,
we split the modifications into two groups based on their code
location: (i) the internal modifications that occurred within the
source and target methods, and (ii) external modifications that
occurred somewhere else.

The internal modification group includes the modifications
within the source/target methods that are identified by the
refactoring detection tool. These modifications are cataloged
and represented on the RMiner detection rules [4]. For those
modifications not detected by RMiner detection rules, we man-
ually observed that different (non-)refactoring modifications
depend on particular project aspects, such as design patterns
and modularization. We concluded that these situational mod-
ifications were not frequent and, thus, did not follow any
pattern. Therefore, we decided to discard these modifications
from the internal group in our results.

The external modification group includes modifications per-
formed externally to the source/target methods and that satisfy
one of the following conditions: (i) the modifications are
included in the standard mechanics of the analyzed refactoring
type, e.g., the creation of the target method during a Extract

Method; or (ii) the modifications are related to additional soft-
ware engineering activities, e.g., feature addition, but interact
with the source/target methods of the refactoring instance. We
consider as interaction with the source/target any invocation
of these methods in the source code of the refactoring modifi-
cations. For this later case, additional modifications are part of
the refactoring activity once they only exist due to the struc-
tural change aimed by the refactoring. Those modifications
typically determine “the interface” between the refactoring
activity and the co-occurring software engineering activities.
For instance, existing IDEs support developers in customizing
an Extract Method refactoring by enabling them to qualify a
method as public, protected or private, which is not a standard
modification in the Extract Method definition, to bind the
refactoring modifications with the non-refactoring modifica-
tions. This binding is made only due to the refactoring activity
(and, therefore, is part of it) as a new method creation is an
intrinsic goal of the refactoring. Making the method accessible
is a compulsory modification to introduce method calls from
client methods that compose the most frequent customizations.

For collecting external modifications, we applied a pattern
matching algorithm. This algorithm visits all modifications
related to a refactoring instance and collects the Java tokens,
e.g., variable and methods names. Then, tokens are filtered
out based on whether there is a mention of the source/target
method name such as the own method declaration, in the case
of external modification (i); or method invocations, in the case
of external modification (ii). When there is a mention of the
source/target method name, the algorithm counts the number
of parameters that were passed in the method invocation.
In this way, we avoid misidentifying method invocations on
refactoring instances that have more than one method with the
same name. For this to be true, we also needed to remove from
our dataset instances that have the source or target methods
with the same name and an equal number of parameters.

In summary, we considered as refactoring modifications the
modifications that satisfy one of the following conditions: (i)
are explicitly listed in refactoring mechanics [1], [4], [21],
or (ii) occurred externally to the source/target methods along
with other (non-)modifications, but that also interacts with
the source/target methods through a method invocation. Al-
together, we found 1,162 refactoring instances and more than
100K modifications related to those refactorings. We found
the following amount of instances and modifications for each
refactoring type: (i) 856 instances and 77,306 modifications
related to Extract Method, (ii) 174 instances and 14,126
modifications related to Inline Method, (iii) 78 instances and
5,856 modifications related to Move Method, and (iv) 54
instances and 3,734 modifications related to Pull Up Method.
Additionally, we collected the commits’ comments related to
each refactoring instance. In this way, we could observe if
developers mentioned any reference to the customizations.

Step 5: Survey with developers. To complement the results
of our study, we conducted a survey to evaluate the relevance
of the most frequent patterns (RQ1) and the need for tooling
support for such patterns (RQ2) based on the developers’ opin-

Method Declaration
(Target)

98.48% Method Access
(Target)

60.86%

Method Access
(Source)

20.68% Variable
Declaration

(Target)

9.00%

Operator
Expression

(Target)

9.70%

Method Access
(Source)

11.45%

Exception Handler
(Target)

13.20%

Exception Handler
(Target)

12.73%

Method Access
(Source)

Operator
Expression

(Source)

4.21%

Exception Handler
(Target)

4.21%

Exception Handler
(Source)

Exception Handler
(Source)

3.15%

18.57% 4.21%

1.1

1.2

1.3

1.4

1.5

1.6

1.8

1.9

1.12

1.7

1.10

1.11

1.13

Fig. 1. Most Common Patterns for Extract Method

Method Declaration
(Source)

94.83%

2.1
Method Access

(Source)

37.36%

2.5

Method Access
(Target)

19.54%

2.3

Operator Expression
(Source)

8.05%

2.10

Method Access
(Target)

8.05%

Method Access
(Source)

14.94%
2.8

2.9

Method Access
(Target)

8.62%

2.2

Exception Handler
(Source)

6.90%

2.4

Operator Expression
(Source)

8.05%

2.6

Return Modifier
(Source)

6.90%

2.7

Fig. 2. Most Common Patterns for Inline Method

ions. We invited participants for the survey using convenience
sampling, i.e., developers who are easily accessible [60]. We
invited developers using professional and academic mailing
lists. The invitees were free to accept or not to participate
and we have not provided any reward for participation. The
participants answered questions regarding their experience
with refactoring applications. In order to level the knowl-
edge of participants, we introduced in detail the definition
and mechanics of customized refactorings and described the
current refactoring tooling support. For the survey questions,
we selected the most frequent patterns that, together, include
all modification categories observed in our catalog. Each ques-
tion included a refactoring instance with the code fragments
before and after the application of a selected customization
pattern. Then, the developers were asked to analyze those code
fragments and indicated whether the presented customization
patterns are relevant and whether it would be necessary to
have tooling support for their application. We made clear that
the developers could ask for clarification during any part of
the survey. The survey was composed of true/false and open-
ended question types. The first question type allows us to
precisely identify the interviewee’s final decision regarding
the customization support needed. The second question type
allows us to understand which factors motivate their answer.
The complete survey including its questions and answers can
be found on our website [38].

IV. RESULTS AND DISCUSSION

The following subsections present RQs’ results and analysis.

A. Refactoring Customization in Practice

Figures 1 to 4 describe the most frequent customization
patterns found for each refactoring type. These patterns are

Method Declaration
(Source)

97.44%

Method Declaration
(Target)

93.59%

3.1

3.2

Method Access
(Target)

80.77%

Method Access
(Source)

70.51%
3.3

3.4
Method Access

(Target)

69.23%

Variable Declaration
(Source)

21.79%

21.79%
Variable Declaration

(Target)

3.9

3.10

Variable Declaration
(Target)

Exception Handler
(Target)

24.36%

24.36%

Variable Declaration
(Source)

21.79%

3.6

3.7

3.8

3.5

Fig. 3. Most Common Patterns for Move Method

Method Declaration
(Source)

Method Declaration
(Target)

Method Access
(Source)

Method Access
(Target)

100.00% 79.63% 20.37%27.78%

Exception Handler
(Source)

9.26%

Exception Handler
(Target)

Method Access
(Target)

38.89%

Method Access
(Target)

Method Access
(Source)

40.74%29.63%
4.1 4.2

4.3 4.4

4.5 4.6

4.8

4.7

4.9

9.26%

Fig. 4. Most Common Patterns for Pull Up Method

presented as a tree structure. Each node (box) in the figures
represents a modification of a specific category performed to
apply the customization. The nodes with dark background col-
ors represent default modifications of Table I. The nodes with
light background colors represent additional modifications.
The green and red colors indicate whether the modification
is an addition modification (+) or removal modification (-).
The labels source (S) and target (T) indicate whether the
modification interacts with the source or the target method.
Each path, starting from the root node, characterizes a pattern
of the respective refactoring type. The nodes belonging to the
path are the modifications that compose the respective pattern.
For example, we have pattern 1.3, for the Extract Method
type, composed by Method Declaration (target) and Method
Access (target). This pattern is expressed in text as {Method
Declaration.T+, Method Access.T+}. Finally, we also present
the percentage of occurrence of the respective pattern. We
consider an occurrence if the pattern is included among all
the modifications of a commit.

Developers constantly apply non-standard modifications.
We observed that Pull Up Method was the only refactoring
type in which a modification from the standard set (removal of
the source method) occurred in 100% of their instances. On the
other hand, modifications in the standard set (the addition of
the target method), only occurred in 79.63% of the instances.
This means that developers, in their customizations, might
even occasionally not perform some standard modifications.
Not applying a default modification does not necessarily imply
a change in code behavior. In the case of the Pull Up Method,
the absence of the creation of the target method is due to the
existence of a method with the same signature. For Pull Up
Method, the existent method is found in one parent class of the
hierarchy. A similar behavior is also observed for the method
declarations of Pattern 3.2 for Move Method and Pattern 1.1

for Extract Method. Thus, these patterns are supported in root-
canal customization classification.

Patterns that simply added a single additional modification
to the standard set occurred in 60.86% of Extract Method
instances, 37.36% of Inline Method instances, 80.77% of
Move Method instances, and 40.74% of Pull Up Method
instances. More complex patterns, with at least two additional
modifications, are less frequent. However, these patterns still
occurred in over 10% of cases for all refactoring types. This is
especially true for Move Method, which had patterns with five
modifications that occurred in 21.79% of the instances. Thus,
although the standard modification set is frequent, developers
customize this set of modifications to include more possible
modifications during the application of each refactoring type.

The most frequent additional modification among refactor-
ings is Method Access. This modification indicates the addition
or removal of a call to the source or target methods in the client
method. The application of this modification unaccompanied
by the replacement by the code of the source or target that
had the call changed indicates a change in behavior, therefore
a floss customization. Other additional modifications such as
Operator Expression and Variable Declaration are related to
code readability and thus do not affect the code behavior, being
root-canal customizations. Finally, the modifications Return
Modifier and Exception Handler do not exclusively indicate
a change in behavior, since they tend to make the code more
robust. Patterns with these two latter modifications can be floss
or root-canal customizations, depending on the scenario.

Customization pattern modifications are similar for dif-
ferent refactoring types. Figure 1 presents the most frequent
patterns for Extract Method. We observed that the addition of
Method Declaration of the target method occurred in 98.48%
of the Extract Method instances. In the remaining patterns,
the refactoring mechanic differed from what is considered
the default. In these cases, the developers extracted code
statements and added them to an existing method. The addition
of the extracted code elements to a method containing only the
signature would not change the code behavior.

For Pattern 1.3, we observed the occurrence of a Method
Declaration along with a Method Access in 60.86% of the
cases. This means that client methods usually add a call to
the target method after the extraction. This behavior reinforces
the findings that developers extract fragments of code in order
to be reused by new clients [13]. Also, for Pattern 1.7, the
developers added a Method Declaration and Method Access
to the target as well as removed Method Access to the source.
This pattern suggests a swap between the source and target
call. However, only in 11.45% of the instances, the developers
switched the call from the source to a call to the target,
indicating a possible code change behavior.

Figure 2 presents the most frequent patterns for Inline
Method. We observed that, for 5.17% of the instances, de-
velopers preferred to keep the source method when applying
Inline Method contrasting what is considered the standard.
The results also indicate that in 37.36% of the Inline Method
instances the client methods removed a call to the source

method (Pattern 2.5), but only in 14.94% there was also the
addition of a call to the target method (Pattern 2.9). Thus,
similarly to Pattern 1.7 of Extract Method, the client methods
that removed the call to the source method and did not replace
that call to a call to the target method had their functionality
reduced. This reduction in functionality may be related to
unexpected code behavior.

Finally, most of the modifications are of the removal type
and interact with the source method. This indicates that
the clients of the source method needed to be adjusted to
remove the interactions that they have with the source method.
However, this adjustment is more complex than just removing
calls to the source method. We can observe that the client
methods also needed to adjust logical expressions (8.05%) and
exception handling (6.9%).

Figure 3 presents the most frequent patterns for Move
Method. We observed that most of the patterns tend to add calls
to the target method (80.77%, Pattern 3.3) and remove calls to
the source method (70.51%, Pattern 3.4). A manual validation
indicated that in 57.69% of the instances of Move Method,
developers added a target method call in client methods that
did not call the source method before the refactoring (floss
customization). We also noticed that developers performed
more complex patterns that include exception handler and
variable declaration, both occurred in 24.36% (Patterns 3.7
and 3.8) of the instances. Finally, we noticed that developers
were often aware of the need to move the source method in
order to improve exception handling. That is, by moving this
method, new methods could take advantage of this handling,
avoiding unexpected behavior [15], [16].

Figure 4 presents the most frequent patterns for Pull Up
Method. We observed that the removal of the source method
together with the addition of the target method occurred in
79.63% of the instances (Pattern 4.2). A manual validation
indicated that in the cases without the addition of the target
method, the superclass in the hierarchy already had a method
with the same signature or an abstraction of it. Based on
the commit’s messages, developers chose to perform this
customization to simplify future implementations and avoid
code duplication [61], [62]. For that, they pulled up only the
method’s content into a superclass in order to create a standard
implementation of this method. That way, each child class
that implements this abstraction will no longer be forced to
implement this method anymore. That is, this scenario required
the customization of the Pull Up Method refactoring to fit
in this different structure. This scenario is described by the
commit’s author [62], as follows:
‘Move generic code to HttpOrSpdyChooser to simplify imple-
mentations. Motivation: HttpOrSpdyChooser can be simplified
so the user not need to implement getProtocol(...) method.’

Similar to the other refactoring types, we also observed
more complex patterns that also involve recurring excep-
tion handling modifications. In those cases, developers were
concerned about ensuring the correct flow of the moved
functionality, avoiding duplicate executions and unexpected
behavior [62], [63]. When moving the handling to the super-

TABLE IV
LIST OF THE LIMITATIONS OF IDES’ REFACTORING TOOLS

Id Limitation

1 Modification only supported if occurred in source/target methods
2 It is not possible to remove source method invocation in client methods
3 It is not possible to remove target method invocation in client methods
4 It is not possible to add source method invocation in client methods
5 It is not possible to add target method invocation in client methods
6 There is no exception support for methods different than source and target ones
7 No exception handler is added if there is an exception error before the refactoring application
8 It is not possible to manage who should handle the exception

9
It is necessary that the extracted code is duplicated and the duplication recognized
by the IDE -Exclusive for Extract Method

10
It is not possible to remove the modification without replacing it with the inlined
method body -Exclusive for Inline Method

11
The swap of the call from source to target must occur in the same client
-Exclusive for Pull Up Method and Move Method

12
It is mandatory to create the moved method, even if there is already a method with
the same name in the destination class -Exclusive for Pull Up Method and Move Method

class, new implementations of this superclass will have the
appropriate standard treatment that already handles possible
exceptions, avoiding further problems for users, as mentioned
by the commit’s author [63].

In general, the standard set of modifications for each refac-
toring type occurred frequently. However, most of the refac-
toring instances involved additional modifications, especially
method calls for both the target and source methods, and
exception handling. These additional modifications turn the
refactoring application more complex. The comments of the
commits indicated that developers were constantly aware of
the need for customization motivated mainly by the addition
of new features and the improvement of program correctness,
avoiding unexpected behavior in the code. These customiza-
tions are recurring and focus on adjusting the refactoring to
specific scenarios, e.g., move a method across hierarchies.

RQ1: In what ways are refactorings customized by
developers? Several recurring refactoring customizations
are consistently present in multiple projects. The standard
refactoring modifications (Table I) are far from being
enough to address developers’ needs. As such, devel-
opers frequently perform additional modifications, as
those involving Method Access and Exception Handler,
which extend or remove default refactoring modifications
discussed in the literature [1]. Based on that, customized
refactorings should be properly documented in order to
better assist developers in performing code refactoring.

B. IDEs’ Support for Customized Refactorings

In the previous RQ, we identified the most frequent patterns
applied by developers when performing four refactoring types.
In this RQ2, we investigated how to improve the automated
refactoring tools provided by the IDEs Eclipse, IntelliJ, and
NetBeans to properly support the application of these patterns.
We analyzed the source code of the instances of each pattern
described in Figures 1 to 4. We minimally adapted the code to
be reproducible in the IDEs’ environment. Then, we manually
invoked the IDEs’ refactoring tools in order to reproduce the

refactoring applied by the developer. For each IDE, we: (i)
used the same code, (ii) selected the same statements, and
(iii) applied the corresponding refactorings. Table IV lists the
main limitations (identified from 1 to 12) that hinder the
application of custom refactoring patterns when using existing
IDEs’ refactoring tools. The limitations 1 to 8 occurred in
more than one refactoring type.

All IDEs share similar customization impediments. Ta-
bles V to VIII present the IDEs support for each pattern
and associate them to the limitations shown in Table IV.
We classified the IDEs’ support into three categories: (i) Full
Support, the refactoring tool is able to reproduce the pattern
completely for all reproduced scenarios; (ii) Partial Support,
the refactoring tool is able to reproduce the pattern completely
only if some preconditions are met; and (iii) No Support, the
refactoring tool is not able to reproduce the complete pattern
in any circumstance. Once the IDEs refactoring tools follow
the standard modifications, we observed that all IDEs had the
same limitations. Thus, we used only one column to indicate
the support category for all of them. The last column indicates
the limitation id.

Table V presents the limitations for applying Extract
Method. Except for Method Declaration.T+, all the other
patterns have No Support or Partial Support. Limitation 2 is
the most frequent among the Extract Method patterns, since
most of the patterns include the removal of a Method Access
in a client method. Limitations 2 to 5 refer to the addition,
removal, or swap of methods calls to the source or target
method.

Limitation 5 is also related to Pattern 3.3, in which devel-
opers add more calls to the target method in Move Methods.
We observed this limitation, mainly, when developers apply
Move Methods to support a feature addition. In the commit
FC14CA31CB36 [64] of the Netty project, the developer
moved the SAFEEXECUTE method from the SINGLETHREAD-
EVENTEXECUTOR class to the ABSTRACTEVENTEXECUTOR
class. The developer also called this moved method in other
classes, mainly in classes that were created to support the
NON STICKY EVENT EXECUTOR GROUP feature addition, as
mentioned in the commit message [64]. A refactoring tool
could mitigate this limitation by identifying when a Move
Method is being applied in the feature addition context. For
example, if the developer creates new classes after the Move
Method application, then the tool can suggest the addition of
a call to the previously moved method.

Limitations 6 to 8 affect the modification Exception Han-
dler. For instance, if the selected statements for Extract Method
throw an exception, the target method will throw this excep-
tion, even if the exception thrower is completely extracted.
Thus, the IDEs do not allow developers to define which
(source/target/client) method must handle that exception. This
inflexibility forces all the methods that invoke the target to
handle the exception themselves. Due to the lack of automated
support, developers may not apply this exception handling
correctly, causing an unintended behavior change.

Tooling support for each refactoring type has particular

TABLE V
LIMITATIONS OF Extract Method REFACTORING TOOLS

Patterns IDEs’ Support Limitation Id

(1.1) Method Declaration.T+ Full support
(1.2) Method Declaration.T+, Method Access.S+ No support 4
(1.3) Method Declaration.T+, Method Access.T+ Partial support 9
(1.4) Method Declaration.T+, Exception Handler.T+ Partial support 6,7,8
(1.5) Method Declaration.T+, Method Access.S- No support 2
(1.6) Method Declaration.T+, Method Access.T+, Exception Handler.T+ Partial support 6,7,8,9
(1.7) Method Declaration.T+, Method Access.T+, Method Access.S- No support 2,9
(1.8) Method Declaration.T+, Method Access.T+, Operator expression.T+ Partial support 1 (Operator Exp.),9
(1.9) Method Declaration.T+, Method Access.T+, Variable Declaration.T+ No support 1 (Variable Decla.),9
(1.10) Method Declaration.T+, Method Access.T+, Method Access.S-,
Operator Expression.S-

No support 1 (Operator Exp.),2,9

limitations. IDEs’ refactoring tools have the same limitations,
as discussed for Extract Method, for the remaining refactoring
types. However, there are some particularities for each refac-
toring type. For Extract Method, we observed the exclusive
Limitation 9. This limitation indicates that it is not possible
to manually choose two similar or equal fragments of code to
be extracted in a new method. In this way, developers depend
on the tool to consider the codes as duplicates, otherwise,
developers will need to perform the extraction manually.

For Inline Method (Table VI), we have the exclusive
Limitation 10. In this refactoring, developers can choose to
replace the call to the source method with the body of the
source method. However, the refactoring tool does not let the
developer only remove the call to the source method or replace
the call to the source method with a call to the target method,
both modifications are often applied. Therefore, developers are
forced to: (i) make these not supported modifications manually
or (ii) apply the refactoring as suggested by the tool and
then remove manually some modifications applied. In both
situations, because of the manual step, more effort is needed.
This limitation increases the misalignment between refactoring
tools and custom refactorings, increasing tool misuse [9], [10].

Limitation 11, exclusive for both Move Method (Table VII)
and Pull Up Method (Table VIII), states that the refactoring
tool allows developers to exchange a call to the source method
for a call to the target. However, it does not allow only the
addition of a call to the target method or only the removal
of a call to the source method. For instance, developers may
choose to call the target method on methods that did not call
the source before refactoring because these methods did not
have access to the source method or are in an inappropriate
place. Inappropriate places are one of the main reasons why
developers apply the Move method [13].

Finally, Limitation 12 is also exclusive for Move Method
and Pull Up Method. This limitation indicates that it is not
possible to move only the method content to a method with
the same signature in the destination class. Thus, developers
are forced to: (i) apply these refactoring manually, or (ii) force
the method to be moved, leaving the destination class with two
methods with the same signature.

We believe that the current tools are helpful for supporting
refactoring activities. However, as hypothesized, these tools
are not able to properly support the customizations performed
by developers due to several limitations. In this way, devel-

TABLE VI
LIMITATIONS OF Inline Method REFACTORING TOOLS

Patterns IDEs’ Support Limitation Id

(2.1) Method Declaration.S- Full support
(2.2) Method Declaration.S-, Method Access.T- No support 3
(2.3) Method Declaration.S-, Method Access.T+ No support 5
(2.4) Method Declaration.S-, Exception Handler.S- Partial support 6,7,8
(2.5) Method Declaration.S-, Method Access.S- Partial support 10 (Method Access)
(2.6) Method Declaration.S-, Operator expression.S- Partial support 10 (Operator Exp.)
(2.7) Method Declaration.S-, Return modifier.S- Partial support 10 (Return modifier)
(2.8) Method Declaration.S-, Method Access.T+, Method Access.T- No support 3,5
(2.9) Method Declaration.S-, Method Access.T+, Method Access.S- No support 5,10
(2.10) Method Declaration.S-, Method Access.S-,
Operator expression.S-

Partial support
10 (Operator Exp.),
10 (Method Access)

TABLE VII
LIMITATIONS OF Move Method REFACTORING TOOLS

Patterns IDEs’ Support Limitation Id

(3.1) Method Declaration.S- No support 12
(3.2) Method Declaration.S-, Method Declaration.T+ Full support
(3.3) Method Declaration.S-, Method Declaration.T+, Method Access.T+ No support 5
(3.4) Method Declaration.S-, Method Declaration.T+, Method Access.S- No support 2
(3.5) Method Declaration.S-, Method Declaration.T+, Method Access.S-,
Method Access.T+

Partial support 11

(3.6) Method Declaration.S-, Method Declaration.T+, Method Access.T+,
Variable declaration.S-

No support 1 (Variable Decla.), 5

(3.7) Method Declaration.S-, Method Declaration.T+, Method Access.T+,
Exception Handler.T+

No support 5,6,7,8

(3.8) Method Declaration.S-, Method Declaration.T+, Method Access.T+,
Variable declaration.T+

No support 1 (Variable Decla.),5

(3.9) Method Declaration.S-, Method Declaration.T+, Method Access.S-,
Method Access.T+, Variable declaration.S-

No support 1 (Variable Decla.),11

(3.10) Method Declaration.S-,Method Declaration.T+, Method Access.S-,
Method Access.T+, Variable declaration.T+

No support 1 (Variable Decla.),11

opers are forced to manually apply the modification set of a
customized refactoring either partially or completely, which
is cumbersome and error-prone [10]. In general, the IDEs’
refactoring tools present similar behavior. These tools do not
allow users to change the modification set of a refactoring; that
is, adding modifications besides those predefined by the IDE
for each refactoring type or even removing a predefined one.
We agree that IDEs should prioritize supporting code behavior
preservation as default. However, even modifications that are
not supposed to change code behavior, such as Variable Dec-
laration and Operator Expression, are not properly supported.

RQ2: How to improve IDEs’ automated refactoring
tools to properly support customized refactorings?
Refactoring tools should make the configuration of refac-
toring modifications more flexible, allowing developers to
adjust it based on their needs [8]. Existing tools would
better adhere to developers’ needs if they were designed
to (i) support a comprehensive catalog of a mutable set of
code modifications; (ii) have a configuration that allows
developers to handle the clients that will be affected by
the refactoring; (iii) allow developers to choose which
element(s) should handle possible exceptions; and (iv)
allow developers to choose between creating new meth-
ods or using existing ones.

TABLE VIII
Limitations of Pull Up Method Refactoring Tools

Patterns IDEs’ Support Limitation Id

(4.1) Method Declaration.S- Full support
(4.2) Method Declaration.S-, Method Declaration.T+ Full support
(4.3) Method Declaration.S-, Method Access.T+ No support 5
(4.4) Method Declaration.S-, Method Access.S- No support 2
(4.5) Method Declaration.S-, Method Declaration.T+, Exception Handler.S- Partial support 6,7,8
(4.6) Method Declaration.S-, Method Declaration.T+, Exception Handler.T+ Partial support 6,7,8
(4.7) Method Declaration.S-, Method Declaration.T+, Method Access.T+ No support 5
(4.8) Method Declaration.S-, Method Declaration.T+, Method Access.S- No support 2
(4.9) Method Declaration.S-,Method Declaration.T+, Method Access.S-,
Method Access.T+

Partial support 11

C. Developers’ Opinion About Customization Refactoring

In the last step of our study, we conducted a survey to
enrich RQs’ results taking into account developers’ opinions.
All the survey details and results, including those not covered
here, are presented on our study website [38]. Altogether the
survey was answered by 40 developers. We observed that
most of the respondents are familiar with the refactoring
application. The majority of respondents (70.8%) declared
themselves quite experienced with refactoring, performing
refactoring constantly, whereas the remaining indicated apply-
ing refactorings periodically. Among the respondents, Eclipse
is the most used IDE with 68.2% of them using it, followed
by IntelliJ and Netbeans with 46.3% and 14.6%, respectively.
Notably, 43% of them also indicated using multiple IDEs.

Respondents agree with the relevance of customization
patterns. Survey answers indicate that the majority of the
respondents agree with the relevance and support for cus-
tomization patterns. Their answers were positive for all the
types of non-standard refactoring modifications covered in the
survey. For instance, the survey revealed 92.7% of agreement
concerning both the relevance and the support needed for
patterns that include addition and removal of Method Access.
Interestingly, this modification category is present in the
most frequent customization patterns. Also, this category is
responsible to allow developers to select which method should
access the source and target methods after the refactoring; this
issue is related to the IDE Limitations 1 to 5 (Section IV.B).

With an agreement of 87.8%, the respondents also men-
tioned the importance of supporting customizations for Method
Declaration. They agreed that developers should be in charge
of deciding whether the method should be entirely (including
its declaration) or partially moved. Regarding code exceptions,
75.6% of the respondents agreed that developers should be also
given the flexibility of selecting where Exception Handler is
introduced; this issue is associated with Limitations 6 to 8.
Lastly, the respondents also pointed out the importance of tool
assistance for refactoring customizations involving Variable
Declaration, Return Modifier and Operator Expression with
agreement of 70.7%, 65.9%, and 63.4%, respectively.

Customization assistance: spontaneously mentioned posi-
tive and negative factors. Finally, we also asked the respon-
dents to openly justify their answers with free text by explain-
ing which factors motivate tooling support for customization

TABLE IX
FACTORS MOTIVATING REFACTORING CUSTOMIZATION SUPPORT

Positive factors Negative factors

Awareness of side effects 44% Own refactoring style 26%
Less error prone 41% Low relevance 22%
Good coding practice 30% Simplicity of modification 11%
Awareness of refactoring alternatives 26% May not be a refactoring 11%
Behavior preservation 19% Manual preference 11%

patterns. We manually categorized and grouped their answers
into positive (i.e., motivating) factors and negative (i.e., de-
motivating) factors emerging from their answers. These factors
are listed in Table IX with the their corresponding percentages
of explicit mentions from developers.

We observed that positive factors were much more fre-
quently mentioned than negative ones. Most importantly, the
majority of the negative factors have to do with personal
preferences or uncertainties of the respondents, including:
(i) freely follow their specific programming styles (26%);
(ii) preference to apply customizations manually (11%); and
(iii) not able to determine if one of the customization patterns
(addressed explicitly in the survey) was indeed a refactoring
(11%). There were a few cases of respondents that concerning
one particular case of customization pattern: (i) was too simple
(11%) to be supported by the IDE, or (ii) could not tell whether
it was relevant to software maintainability (22%).

Developers argue that explicit customization support would
improve code quality and correctness. They reported that IDE
assistance for refactoring customization would improve their
awareness with respect to bug proneness (41%), guarantees
of behavior preservation (19%) and other possible side effects
(44%) as well as adherence to good coding practices (30%).
Finally, some respondents also found interesting the possibility
of they becoming aware of multiple refactoring configuration
alternatives (26%).

D. Actionable results

Until now, we discussed the practical occurrence of cus-
tomized refactoring, the IDE limitations, and the develop-
ers’ opinion regarding the need for refactoring customization
support. Here, we discuss how to incorporate our findings
into tooling support. A direct way is by integrating it into
a semi-automated strategy of stepwise refactoring [65]. In
this strategy, each refactoring modification is a step selected
(or approved) by the developer, through which she/he can
visualize, understand, and decide about each step. A graphical
interface can support these steps by displaying the known
alternatives of customizations, e.g., our results shown in Fig-
ures 1-4, which can either be selected or adjusted based on
developers’ preferences, e.g., following their code styles or
team quality standards. Developers can also save their own
performed customizations per refactoring type for later reuse.

The stepwise strategy is aligned with developers’ expec-
tations observed in our survey (Table IX), including (i) their
“awareness of refactoring side effects” by tracking each of the
refactoring modifications and their code effects; (ii) “reduced

error-proneness”, allowing the developer to reason about the
impact of each modification individually on the behavior of
the code; and (iii) “awareness of refactoring alternatives”, as
the modifications are progressively shown to the developer
depending on their previously-selected options, e.g., following
a path in the refactoring trees of Figures 1 to 4. Stepwise
customized refactoring favors those developers requiring full
control and predictability [9], [66] of customized refactorings
((i) and (ii) above) as they decide on the refactoring application
step by step, thereby making them feel more confident using
tooling support. This strategy is also aligned with recent and
emerging proposals for step-wise refactoring in a range of
different contexts, e.g., [11], [65].

V. THREATS TO VALIDITY

We describe here the threats to validity and their mitigation.
Internal and Construct Validity. RMiner [13], [53] may

yield false positives and false negatives. It has an effectiveness
of 87.2% for recall and 98% for precision [4], which is the
best effectiveness among detection tools. To alleviate this
threat, we manually inspected some instances of our database.
Although we are currently analyzing refactorings detected only
by RMiner, it is possible to observe that this tool has detection
rules quite flexible, allowing several customizations [4].

RMiner detects 15 types of refactorings in version 1.0 [4],
but we analyzed only four types of refactorings. Although
these four refactorings may not fully embrace all forms of
refactoring customizations, they have been frequently ap-
plied [13], [14]. Also, these refactorings affect the program
structure differently at method-level and class-level. For in-
stance, Extract Method is a method-level refactoring, affecting
directly one class. Different from Extract Method, Move
Methods, and Pull Up Methods affect at least two classes,
including changes affecting a class hierarchy. Yet, these refac-
torings have similarities with other refactoring types, e.g. Move
Method moves a method from one class to another, similarly
to Push Downs and Pull ups. We chose Pull Up to understand
this method movement in the context of a class hierarchy.
We avoid textual refactorings such as renames. Given their
simpler and lexical nature, they have less room for structural
customization.

The collected modification types may not consider all pos-
sible modification types. We used Eclipse JDT library because
this library has a very fine level of granularity. In this way,
we could detect a large number of modifications. Besides, this
library is commonly used to build automated refactoring tools
for Eclipse and RMiner.

Finally, the use of other tools and a larger refactoring
interval (considering more than one commit) could present
complementary results, such as new customization patterns.
However, these supplemental patterns do not invalidate the
ones currently reported in our paper nor the limitations of the
IDEs.

External Validity. We performed an in-depth analysis of
refactoring instances from 13 Java projects. However, our
results might not necessarily hold to other projects involving

other primary programming languages and/or from domains
not covered by our dataset. Moreover, we focused our analysis
on open-source projects. The nature of refactoring in closed-
source projects is not necessarily the same as refactoring in
open-source ones. However, popular open-source projects have
a major concern with software modularity, tending to continu-
ously refactor the source code. We analyzed projects with
differing sizes/domains and all key findings were uniform.
These projects have an active community, according to Github
metrics.

VI. CONCLUSION

We presented a study to understand in what ways developers
customize refactoring in practice and how to improve refactor-
ing tools to properly support these customizations. We investi-
gated the most frequent customization patterns for four refac-
torings types in 13 Java projects. The results revealed that de-
velopers frequently added new modifications, or remove some,
of the standard set for each refactoring type. These changes
to the standard set customize the refactorings for the specific
developer’s scenarios. We then listed the current limitations
of popular IDEs that should be improved to provide adequate
support for these customizations. We also observed that de-
velopers agree with the relevance of customizations and show
interest in having tool support for recurring customizations.

Finally, it is important to highlight that the modification sets
currently considered standard ones are far from being enough
to address practical needs. It is also important to consider
the fact that the lack of support for refactoring customization
might intensive side effects. As future work, we plan to design
and implement tool support for better assisting developers in
performing customized refactorings. We also intend to expand
the number of refactoring types and projects, reducing the
threats to external validity.

ACKNOWLEDGEMENTS

This study was in part financed by CNPq
(141276/2020-7, 141054/2019-0); FAPERJ (22520-
7/2016, 010002285/2019, E-26/211.033/2019, 202621/2019),
FAPEAL (60030.0000000161/2022)and PDR-10 Fellowship
(202073/2020); and IEEA-RJ (001/2021).

REFERENCES

[1] M. Fowler, Refactoring, 1st ed. Addison-Wesley Professional, 1999.
[2] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini, “On the

impact of refactoring on the relationship between quality attributes and
design metrics,” in ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 2019, pp. 1–
11.

[3] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How
does refactoring affect internal quality attributes? A multi-project study,”
in 31st Brazilian Symposium on Software Engineering (SBES), 2017, pp.
74–83.

[4] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian,
and D. Dig, “Accurate and efficient refactoring detection in
commit history,” in 40th International Conference on Software
Engineering. ACM, 2018, pp. 483–494. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180206

[5] Eclipse. (2022) Eclipse ide website. [Online]. Available:
https://www.eclipse.org/

[6] netbeans. (2022) Netbeans ide website. [Online]. Available:
https://netbeans.org/

[7] Jtbrains. (2022) Intelij ide website. [Online]. Available:
https://www.jetbrains.com/

[8] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,”
IEEE software, vol. 25, no. 5, pp. 38–44, 2008.

[9] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, disuse, and misuse of automated refactorings,” in
34th International Conference on Software Engineering. IEEE Press,
2012, pp. 233–243.

[10] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at Microsoft,” IEEE Transactions on
Software Engineering (TSE), vol. 40, no. 7, pp. 633–649, 2014.

[11] D. Tenorio, A. C. Bibiano, and A. Garcia, “On the customization of
batch refactoring,” in 3rd International Workshop on Refactoring. IEEE
Press, 2019, pp. 13–16.

[12] J. Oliveira, R. Gheyi, M. Mongiovi, G. Soares, M. Ribeiro, and A. Gar-
cia, “Revisiting the refactoring mechanics,” Information and Software
Technology, vol. 110, pp. 136–138, 2019.

[13] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Con-
fessions of GitHub contributors,” in 24th International Symposium on
Foundations of Software Engineering (FSE), 2016, pp. 858–870.

[14] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi, “Does refactoring
improve software structural quality? a longitudinal study of 25 projects,”
in 30th Brazilian Symposium on Software Engineering, 2016, pp. 73–82.

[15] Netty. (2017) Removing a seekaheadnobackarrayex-
ception to avoid exception handling. Available at:
https://github.com/netty/netty/commit/b03b0f22d1e.

[16] A. Tomcat. (2014) Apply patch 12 from
jboynes to improve cookie handling. Available at:
https://github.com/apache/tomcat/commit/0cdfed561d.

[17] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy, “Fault-
buster: An automatic code smell refactoring toolset,” in IEEE 15th
International Working Conference on Source Code Analysis and Ma-
nipulation (SCAM). IEEE, 2015, pp. 253–258.

[18] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how we
know it,” IEEE Transactions on Software Engineering (TSE), vol. 38,
no. 1, pp. 5–18, 2012.

[19] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez, “Understanding the impact of
refactoring on smells,” in Foundations of Software Engineering (FSE),
2017, pp. 465–475.

[20] A. C. Bibiano, E. Fernandes, D. Oliveira, A. Garcia, M. Kalinowski,
B. Fonseca, R. Oliveira, A. Oliveira, and D. Cedrim, “A Quantitative
Study on Characteristics and Effect of Batch Refactoring on Code
Smells,” in 13th International Symposium on Empirical Software En-
gineering and Measurement (ESEM), 2019, pp. 1–11.

[21] W. F. Opdyke, “Refactoring: A program restructuring aid in designing
object-oriented application frameworks,” Ph.D. dissertation, University
of Illinois at Urbana-Champaign, 1992.

[22] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theory and Practice of Object systems, vol. 3, no. 4, pp. 253–263, 1997.

[23] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering (TSE), 2020.

[24] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-finder: a refac-
toring reconstruction tool based on logic query templates,” in 18th
ACM SIGSOFT international symposium on Foundations of software
engineering, 2010, pp. 371–372.

[25] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139, 2004.

[26] P. Meananeatra, “Identifying refactoring sequences for improving soft-
ware maintainability,” in 27th International Conference on Automated
Software Engineering (ASE), 2012, pp. 406–409.

[27] D. Silva, J. Silva, G. J. D. S. Santos, R. Terra, and M. T. O. Valente,
“Refdiff 2.0: A multi-language refactoring detection tool,” IEEE Trans-
actions on Software Engineering, 2020.

[28] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Ten years of
JDeodorant: Lessons learned from the hunt for smells,” in 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 4–14.

[29] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and
guided architectural refactoring with search-based recommendation,” in
24th International Symposium on the Foundations of Software Engineer-
ing (FSE), 2016, pp. 535–546.

[30] D. Silva, R. Terra, and M. T. Valente, “Recommending automated extract
method refactorings,” in 22nd International Conference on Program
Comprehension, 2014, pp. 146–156.

[31] S. Xu, A. Sivaraman, S.-C. Khoo, and J. Xu, “Gems: An extract method
refactoring recommender,” in IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2017, pp. 24–34.

[32] M. Paixão, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke,
and E. Arvonio, “Behind the intents: An in-depth empirical study on
software refactoring in modern code review,” in 17th International
Conference on Mining Software Repositories, 2020, pp. 125–136.

[33] J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto,
G. Bavota, and M. D. Penta, “Why developers refactor source code: A
mining-based study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 29, no. 4, pp. 1–30, 2020.

[34] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” in 31st International Conference on Software Engineering
(ICSE), 2009, pp. 287–297.

[35] J. S. Moreira, E. L. Alves, and W. L. Andrade, “An exploratory study
on extract method floss-refactoring,” in 35th Annual ACM Symposium
on Applied Computing, 2020, pp. 1532–1539.

[36] J. Brant and F. Steimann, “Refactoring tools are trustworthy enough and
trust must be earned,” IEEE Software, vol. 32, no. 6, pp. 80–83, 2015.

[37] Tomcat. (2011) Re-fixed bug #49711: Httpservle-
trequest#getparts() does not work. Available at:
https://github.com/apache/tomcat/commit/f69c17895.

[38] (2022) The untold story of code refactoring customizations
in practice. Complementary materials. [Online]. Available:
https://customrefactoring.github.io

[39] H. Borges and M. T. Valente, “What’s in a GitHub star? Understanding
repository starring practices in a social coding platform,” J. Syst. Softw.
(JSS), vol. 146, pp. 112–129, 2018.

[40] (2022) Elasticsearch-hadoop. [Online]. Available:
https://github.com/elastic/elasticsearch-hadoop

[41] (2022) Hystrix. [Online]. Available: https://github.com/Netflix/Hystrix
[42] (2022) Fresco. [Online]. Available: https://github.com/facebook/fresco
[43] (2022) Achilles. [Online]. Available:

https://github.com/doanduyhai/Achilles
[44] (2022) Ikasan. [Online]. Available: https://github.com/ikasanEIP/ikasan
[45] (2022) Exoplayer. [Online]. Available:

https://github.com/google/ExoPlayer
[46] (2022) Signal-android. [Online]. Available:

https://github.com/signalapp/Signal-Android
[47] (2022) Netty. [Online]. Available: https://github.com/netty/netty
[48] (2022) Materialdrawer. [Online]. Available:

https://github.com/mikepenz/MaterialDrawer
[49] (2022) Derby. [Online]. Available: https://github.com/apache/derby
[50] (2022) Tomcat. [Online]. Available: https://github.com/apache/tomcat
[51] (2022) Hikaricp. [Online]. Available:

https://github.com/brettwooldridge/HikariCP
[52] (2022) Material dialogs. [Online]. Available:

https://github.com/afollestad/material-dialogs
[53] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, “A multidimensional

empirical study on refactoring activity,” in 23rd Annual International
Conference on Computer Science and Software Engineering (CASCON),
2013, pp. 132–146.

[54] Eclipse. (2022) Using the help system. [Online]. Available:
https://help.eclipse.org/mars/index.jsp

[55] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, and S. Demeyer,
“Comparison of similarity metrics for refactoring detection,” in 8th
working conference on mining software repositories. ACM, 2011, pp.
53–62.

[56] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
grained and accurate source code differencing,” in ACM/IEEE Interna-
tional Conference on Automated Software Engineering, 2014, pp. 313–
324. [Online]. Available: http://doi.acm.org/10.1145/2642937.2642982

[57] J. Xuan, B. Cornu, M. Martinez, B. Baudry, L. Seinturier, and M. Mon-
perrus, “B-refactoring: Automatic test code refactoring to improve
dynamic analysis,” Information and Software Technology, vol. 76, pp.
65–80, 2016.

[58] K. Liu, D. Kim, A. Koyuncu, L. Li, T. F. Bissyandé, and Y. Le Traon,
“A closer look at real-world patches,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 275–286.

[59] F. Fresco. (2016) Added dropcache to animationbackend. Available at:
https://github.com/facebook/fresco/commit/2d82c6c185.

[60] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[61] A. Tomcat. (2013) Implment a standard isblocking() method for output.
Available at: https://github.com/apache/tomcat/commit/53617a2011.

[62] Netty. (2016) Move generic code to httporspdy-
chooser to simplify implementations. Available at:
https://github.com/netty/netty/commit/33a810a513.

[63] ——. (2016) Throw exception if keymanagerfac-
tory is used with opensslclientcontext. Available at:
https://github.com/netty/netty/commit/ebfb2832b2.

[64] ——. (2016) Add nonstickyeventexecutorgroup. Available at:
https://github.com/netty/netty/commit/fc14ca31cb.

[65] A. M. Eilertsen and G. C. Murphy, “Stepwise refactoring tools,” in
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2021, pp. 629–633.

[66] ——, “The usability (or not) of refactoring tools,” in IEEE international
conference on software analysis, evolution and reengineering (SANER).
IEEE, 2021, pp. 237–248.

